EXTERNAL THERMAL INSULATION COMPOSITE SYSTEM (ETICS)
Installation guidelines best wood SCHNEIDER® ETICS
Legal notice

best wood SCHNEIDER® GmbH
Kappel 28
88436 Eberhardzell
GERMANY

Phone +49 (0)7355 9320-0
Fax +49 (0)7355 9320-300
Email info@schneider-holz.com

best wood SCHNEIDER® GmbH
Bucherstrasse 10
9556 Affeltrangen
SWITZERLAND

Phone +41 (0)71 918 79 79
Fax +41 (0)71 918 79 78
Email info@schneider-holz.com

Picture credits: best wood SCHNEIDER® GmbH,
Technical changes and mistakes reserved.

www.schneider-holz.com
Uncomplicated, fast & reliable – the team of best wood SCHNEIDER® deals with your requests.
CONTACT

Bianca Reuter
Phone  +49 (0)7355 9320-251
Fax       +49 (0)7355 9320-300
E-Mail   b.reuter@schneider-holz.com

Corinna Rosa
Phone  +49 (0)7355 9320-247
Fax       +49 (0)7355 9320-300
E-Mail   c.rosa@schneider-holz.com

Niclas Gröber
Phone  +49 (0)7355 9320-253
Fax       +49 (0)7355 9320-300
E-Mail   n.groeber@schneider-holz.com
For timber frame constructions

Classical timber-frame construction with an insulated frame construction. OSB boards on the inside for bracing and for a vapor barrier and airtight seal with stapled wood fiber insulation boards for a service cavity. Renderable best wood WALL 180 wood fiber insulation board on the outside.

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>best wood external rendering</td>
<td>60 mm</td>
</tr>
<tr>
<td>best wood WALL 180</td>
<td>60 mm</td>
</tr>
<tr>
<td>best wood FLEX 50 between studs</td>
<td>140 mm</td>
</tr>
<tr>
<td>OSB-panel</td>
<td>15 mm</td>
</tr>
<tr>
<td>best wood FLEX 50 between service cavity</td>
<td>60 mm</td>
</tr>
<tr>
<td>Gypsum fiberboard</td>
<td></td>
</tr>
</tbody>
</table>

For continuous and load-bearing solid timber substrates

Cross laminated timber wall for the structural load-bearing structure and for a vapor barrier and airtight seal. Stapled wood fiber insulation boards on the inside for a possible service cavity. Renderable best wood WALL 140 wood fiber insulation board on the outside.

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>best wood external rendering</td>
<td></td>
</tr>
<tr>
<td>best wood WALL 140</td>
<td>160 mm</td>
</tr>
<tr>
<td>Cross laminated timber wall</td>
<td>120 mm</td>
</tr>
<tr>
<td>best wood ROOM 140</td>
<td>60 mm</td>
</tr>
<tr>
<td>Internal plastering</td>
<td></td>
</tr>
</tbody>
</table>

For mineral substrates

Wood fiber insulation board fastened to masonry with adhesive on the inside for a possible service cavity. Renderable best wood WALL 140 wood fiber insulation board fastened with anchors.

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>best wood external rendering</td>
<td></td>
</tr>
<tr>
<td>best wood WALL 140</td>
<td>160 mm</td>
</tr>
<tr>
<td>Brick masonry</td>
<td>240 mm</td>
</tr>
<tr>
<td>best wood ROOM 140</td>
<td>60 mm</td>
</tr>
<tr>
<td>Internal plastering</td>
<td></td>
</tr>
</tbody>
</table>
best wood ETICS approvals

Ü-mark of conformity:
- for best wood WALL 140/180
- for an application on
  - timber frame constructions
  - continuous and load bearing solid timber substrates
  - on mineral substrates
- for the best wood render system

Certifications

CE
With the CE marking, the manufacturer best wood SCHNEIDER declares, that the best wood insulation boards are meeting the requirements of the applicable EC directives DIN EN 13171.
www.ce-zeichen.de

natureplus
This label is an orientation aid to help consumers and building professionals identify the best, tried and tested products on the market. The EU Construction Products Regulation requires a declaration of the product characteristics (performance declaration) with regard to the resource consumption, hygiene and the environment. The natureplus label identifies the best products for sustainable building.
www.natureplus.org

Ü mark of conformity
The Ü mark of conformity identifies construction products that correspond to the national technical approval. In Germany, for reasons of health and environment, the Ü mark is required for defined construction products for interior use.

PEFC
The PEFC is an international, transparent and non-governmental organization, which promotes sustainable forest management through independent third party certification. The forest certification according to PEFC standards is based on the very strict requirements for sustainable forest management. This management is controlled by qualified and independent organizations.
www.pefc.de

KEYMARK
The KEYMARK is a voluntary European certification mark demonstrating compliance with the European Standard (EN).
Wood fiber insulation boards

best wood WALL 140

best wood WALL 140 is a pressure-resistant, plasterable wood fiber insulation board for continuous an load-bearing solid timber substrates and mineral substrates.

Technical data

Denomination WF-EN13171-T4-CS(10(Y)100-TR20-WS1,0-AF75-MU3
German general type approval DiBt Z-23.15 1828
Density 140 [kg/m³]
Nominal value of thermal conductivity λ 0,040 [W/mK]
Rated value of thermal conductivity λ 0,042 [W/mK]
Compressive strength at 10% compression ≥ 100 [kPa]
Tensile strength perpendicular to the plane of the board ≥ 20 [kPa]
Water vapor diffusion resistance μ 3
Linear flow resistance > 75 [kPa·s/m²]
Modulus of elasticity ≥ 1,45 [N/mm²]
Reaction to fire according to DIN EN 13501-1 E bzw. B-s1,d0 with best wood render system
Construction material class according to DIN 4102-1 B2
Full declaration wood fiber, PMDI gluing, paraffin
Specific heat capacity 2100 [J/kgK]
Fields of application according to DIN 4108-10 DEO-ds, WAB-ds, WAP-zh, WZ, WH, WI-zg, WTR

Formats

Edge profiles tongue+groove (wooden substrates), stump (mineral substrates)
Thickness 40, 60, 80, 100, 120, 140, 160, 200 mm
Length 800, 1250, 1500, 2000 mm
Width 600 mm (stump), 580 mm (tongue+groove)
Approved board thicknesses (ETICS) 60, 80, 100, 120, 140, 160 mm
Approved board lengths (ETICS) all Length

best wood PERIMETER INSULATION

The best wood perimeter insulation board is made from high quality polystyrene. The insulation boards are particularly characterized by a high grade of accuracy and a high degree of non-shrinking. This enables an efficient and joint-free processing.

Technical data

Rated value of thermal conductivity λ 0,035 [W/mK]
Compressive strength at 10% compression 150 [kPa]
Fire index B1 according to DIN 4102-1

Formats

Edge profiles stump
Thickness 40, 60, 80, 100, 120, 140, 160, 180, 200 mm
Length 1000 mm
Width 500 mm
Delivery in pairs
WALL 180 is a high-pressure resistant wood fiber insulation board that can be plastered. It can be applied on timber frame constructions in external walls.

### Technical data

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denomination</td>
<td>WF-EN 13171-T4-CS(10)Y150-TR30-WS1.0-AF100-MU3</td>
</tr>
<tr>
<td>German general type approval</td>
<td>DiBt Z-23.15 1828</td>
</tr>
<tr>
<td>Density</td>
<td>180 [kg/m³]</td>
</tr>
<tr>
<td>Nominal value of thermal conductivity ( \lambda )</td>
<td>0.043 [W/mK]</td>
</tr>
<tr>
<td>Rated value of thermal conductivity ( \lambda )</td>
<td>0.045 [W/mK]</td>
</tr>
<tr>
<td>Compressive strength at 10% compression</td>
<td>≥ 150 [kPa]</td>
</tr>
<tr>
<td>Tensile strength perpendicular to the plane of the board</td>
<td>≥ 30 [kPa]</td>
</tr>
<tr>
<td>Water vapor diffusion resistance ( \mu )</td>
<td>3</td>
</tr>
<tr>
<td>Linear flow resistance</td>
<td>&gt; 100 [kPa·s/m²]</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>≥ 2,50 [N/mm²]</td>
</tr>
<tr>
<td>Reaction to fire according to DINEN 13501-1</td>
<td>E bzw. B-s1, d0 with best wood render system</td>
</tr>
<tr>
<td>Construction material class according to DIN 4102-1</td>
<td>B2</td>
</tr>
<tr>
<td>Full declaration</td>
<td>wood fiber, PMDI gluing, paraffin</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>2100 [J/kgK]</td>
</tr>
<tr>
<td>Fields of application according to DIN 4108-10</td>
<td>DEO-ds, WAB-ds, WAP-zh, WZ, WH, WI-zg, WTR</td>
</tr>
</tbody>
</table>

### Formats

<table>
<thead>
<tr>
<th>Edge profiles</th>
<th>tongue+groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>40, 60, 80, 100, 120, 140, 160 mm</td>
</tr>
<tr>
<td>Length</td>
<td>1250, 1500, 2000, 2500 mm</td>
</tr>
<tr>
<td>Width</td>
<td>580 mm</td>
</tr>
<tr>
<td>Approved board thicknesses (ETICS)</td>
<td>60, 80, 100 mm</td>
</tr>
<tr>
<td>Approved board lengths (ETICS)</td>
<td>all board formats up to 2000 mm</td>
</tr>
</tbody>
</table>

### best wood WALL 180 REVEAL BOARD

best wood reveal board WALL 180 to cover the window reveals.

#### Technical data

For detailed technical data, please see WALL 180.

#### Formats

<table>
<thead>
<tr>
<th>Edge profiles</th>
<th>stump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>20, 40 mm</td>
</tr>
<tr>
<td>Length</td>
<td>1250, 1500, 2000, 2500 mm</td>
</tr>
<tr>
<td>Width</td>
<td>600 mm</td>
</tr>
<tr>
<td>Delivery in pairs</td>
<td></td>
</tr>
</tbody>
</table>
Accessories for wood fiber insulation boards

Wide-back staples

Wide-back staples for the fastening of best wood WALL 140/180 to continuous and load-bearing solid timber substrates and for a use on timber frame constructions.

<table>
<thead>
<tr>
<th>Length</th>
<th>75–200 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective penetration depth in solid wood substrates</td>
<td>≥ 30/36 mm</td>
</tr>
<tr>
<td>Material</td>
<td>stainless steel</td>
</tr>
</tbody>
</table>

Best wood Ejotherm STR H screw-in anchor (for timber constructions)

Screw-in anchor for a flushmounted fastening on solid wooden substrates and timber frame constructions.

<table>
<thead>
<tr>
<th>Screw-in plate with polystyrene cap</th>
<th>Ø 60 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective screw-in depth</td>
<td>≥ 35 mm</td>
</tr>
<tr>
<td>Available lengths Ø 6 mm</td>
<td>80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 mm</td>
</tr>
</tbody>
</table>

Ejotherm STR U 2G screw-in anchor for insulation boards for concrete and masonry

Pre-assembled universal screw-in anchor for surface fixed installation in concrete and masonry. UV exposure from sunlight on unprotected anchor: ≤ 6 weeks.

<table>
<thead>
<tr>
<th>Screw-in plate with polystyrene cap</th>
<th>Ø 60 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective penetration depth in dependency on service class, see [page 25]</td>
<td>≥ 25 mm or rather ≥ 65 mm</td>
</tr>
<tr>
<td>Available lengths Ø 8 mm</td>
<td>115, 135, 155, 175, 195, 215, 325, 255, 275, 295 mm</td>
</tr>
</tbody>
</table>

Best wood FDM adhesive sealant for joints

Assembly adhesive to fasten reveal boards and seal joints in the wall insulation. The assembly adhesive can be plastered over.

<table>
<thead>
<tr>
<th>For joint widths from</th>
<th>2–5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartridge 310 ml</td>
<td>470 g content</td>
</tr>
</tbody>
</table>

Best wood plastic base profile

Plastic base rail system with base section and clip-on mesh rail.

<table>
<thead>
<tr>
<th>Profile length</th>
<th>2.00 rmt/rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery form (width)</td>
<td>60, 80, 100, 120, 140, 160 mm</td>
</tr>
<tr>
<td>Packing unit</td>
<td>25 connectors, butt joint connector, 2 corner connecting profiles for outer corners, 1 corner connecting profile for inner corners</td>
</tr>
</tbody>
</table>
■ best wood base profile extension

Extension for the base profile for an additional 40 mm of insulation material thickness. Base profile 160 mm + 40 mm base profile extension = 200 mm width.

<table>
<thead>
<tr>
<th>Length</th>
<th>2,00 rmt/rail</th>
</tr>
</thead>
</table>

■ best wood base connecting profile for outer corners

Corner connecting profile for perfectly fitting outer corners of base profiles on plastic as well as alu profiles.

<table>
<thead>
<tr>
<th>Packing unit</th>
<th>10 pieces</th>
</tr>
</thead>
</table>

■ best wood base connecting profile for inner corners

Corner connecting profile for perfectly fitting inner corners of base profiles on plastic as well as alu profiles.

<table>
<thead>
<tr>
<th>Packing unit</th>
<th>10 pieces</th>
</tr>
</thead>
</table>

■ best wood aluminium base profile

Base rail system from aluminium with integrated connector. (Fabric strip not included)

<table>
<thead>
<tr>
<th>Length</th>
<th>2,50 rmt/rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery form (width)</td>
<td>40, 60, 80, 100, 120, 140, 160, 180, 200</td>
</tr>
</tbody>
</table>

■ best wood tissue strip for aluminium base profile

Attachable plastic profile with tissue part for aluminium base profile, including 25 connectors per bundle. (Connecting profile for inner and outer corners not included).

<table>
<thead>
<tr>
<th>Length</th>
<th>2,50 rmt/rail</th>
</tr>
</thead>
</table>

■ Illmod 600 UV-resistant joint insulation tape

Pre-compressed expanding foam insulation tape to seal open joints and connections in facades against driving rain whilst permitting vapor diffusion. UV-resistant and watertight up to 600 Pa. Building material group BG1 according to DIN 18 542. Building material class B1 according to DIN 4102-1.

| Type 15/3-7 | joint width 3–7 mm | 8,00 rmt/roll | 20 rolls/box |
| Type 15/5-10 | joint width 5–10 mm | 5,60 rmt/roll | 20 rolls/box |
| Type 20/10-18 | joint width 10–18 mm | 4,50 rmt/roll | 10 rolls/box |
■ Render system

■ best wood adhesive and reinforcing mortar (UP)

best wood adhesive and reinforcing mortar with organic lightweight aggregates on a white cement base is a water vapor-permeable, water-repellent and fiber-reinforced adhesive and filling mortar which is easy to use and highly durable. It has high adhesive strength and excellent elasticity and as a filler it enhances the pressure resistance of the system as a whole. best wood Schneider UP adhesive and reinforcing mortar is highly suitable for machine processing.

<table>
<thead>
<tr>
<th>Consumption: depending on processing, surface and consistence</th>
<th>bonding approx. 3,0–3,5 kg/m²</th>
<th>reinforcing approx. 5,0–7,0 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_d$-value</td>
<td>$= 0,07$ m</td>
<td></td>
</tr>
<tr>
<td>Mixing ratio</td>
<td>approx. 9,5 liters of water/bag</td>
<td></td>
</tr>
<tr>
<td>Suitable for machine processing</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Processing temperature</td>
<td>min. +5 °C</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>dry, on pallets</td>
<td></td>
</tr>
<tr>
<td>Storage time</td>
<td>do not exceed 12 months</td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>film bag, 25 kg</td>
<td></td>
</tr>
</tbody>
</table>

■ best wood mineral plaster (MOP)

best wood mineral plaster is a breathable, water-repellent and moisture regulating final render with a brilliant surface texture. Thanks to the extremely high water retentivity it is guaranteed that it can be left open for a long time. Furthermore, it is very easy to process.

<table>
<thead>
<tr>
<th>Consumption, scraped surface plaster texture</th>
<th>2 mm 2,5 kg/m²</th>
<th>3 mm 3,5 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_d$-value</td>
<td>$= 0,11$ m</td>
<td></td>
</tr>
<tr>
<td>Lightness coefficient</td>
<td>&gt; 20 %</td>
<td></td>
</tr>
<tr>
<td>Mixing ratio</td>
<td>approx. 10,0–11,0 liters of water/bag</td>
<td></td>
</tr>
<tr>
<td>Suitable for machine processing</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Processing temperature</td>
<td>min. +5 °C</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>dry, on pallets</td>
<td></td>
</tr>
<tr>
<td>Storage time</td>
<td>do not exceed 6 months</td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>paper bag, 25 kg</td>
<td></td>
</tr>
</tbody>
</table>
best wood silicone resin plaster (SOP)

best wood silicone resin plaster is weatherproof and watertight against driving rain and may be used for decorative finishing on exteriors. It is easy to process, highly adhesive and shockproof, watertight against driving rain, water-repellent, low in tension, vapor-permeable and resistant to alkalis. The silicone-resin final render is only available with ETICS approval for installation of WALL 140 boards on mineral substrates.

<table>
<thead>
<tr>
<th>Consumption, scraped surface plaster texture</th>
<th>2 mm 3,0 kg/m²</th>
<th>3 mm 4,0 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_d$-value</td>
<td>0,16 m</td>
<td></td>
</tr>
<tr>
<td>Lightness coefficient</td>
<td>&gt; 20 %</td>
<td></td>
</tr>
<tr>
<td>Processing temperature</td>
<td>min. +5 °C</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>dry, on pallets</td>
<td></td>
</tr>
<tr>
<td>Storage time</td>
<td>do not exceed 6 months</td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>plastic bucket 25 kg</td>
<td></td>
</tr>
</tbody>
</table>

best wood silicone resin paint

best wood silicone-resin paint is a water-repellent, full-bodied, extremely water vapor-permeable and dirt-repellent, fungicide adjusted, facade paint. It retains its color well, has a very high covering capacity and is easy to apply without lap marks. Maximum water repellence prevents marks even in heavy rain.

<table>
<thead>
<tr>
<th>Bonding agent base</th>
<th>silicone-resin emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment base</td>
<td>titanium dioxide</td>
</tr>
<tr>
<td>Application</td>
<td>exterior</td>
</tr>
<tr>
<td>Surface</td>
<td>matt, smooth and tactile (similar to mineral paint)</td>
</tr>
<tr>
<td>Consumption per coat</td>
<td>150–200 ml/m²</td>
</tr>
<tr>
<td>$s_d$-value</td>
<td>0,35 m</td>
</tr>
<tr>
<td>Lightness coefficient</td>
<td>&gt; 20 %</td>
</tr>
<tr>
<td>Mixing ratio</td>
<td>with approx. 10% water</td>
</tr>
<tr>
<td>Processing</td>
<td>by brush, roller, airless spraying</td>
</tr>
<tr>
<td>Processing temperature</td>
<td>min. +5 °C</td>
</tr>
<tr>
<td>Storage</td>
<td>cool, but in a frost-free place</td>
</tr>
<tr>
<td>Storage time</td>
<td>do not exceed 6 months</td>
</tr>
<tr>
<td>PU</td>
<td>plastic bucket 12,5 l</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

Accessories for render system

best wood fiber reinforcement fabric

System-glass fiber fabric, alkali resistant and with a high tensile strength.

<table>
<thead>
<tr>
<th>Approx. consumption</th>
<th>1,00 lfm²/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh width</td>
<td>4 x 4 mm</td>
</tr>
<tr>
<td>Width</td>
<td>1100 mm</td>
</tr>
</tbody>
</table>

best wood reinforcing arrow

Corner bead for diagonal reinforcement on building openings.

<table>
<thead>
<tr>
<th>Mesh width</th>
<th>4 x 4 mm</th>
</tr>
</thead>
</table>

best wood reveal angle

For diagonal reinforcement at openings in buildings with additional rupture prevention in the corner of the window. Available for a reveal depth of up to 10 cm or for a reveal depth of up to 20 cm.

<table>
<thead>
<tr>
<th>Mesh width</th>
<th>4 x 4 mm</th>
</tr>
</thead>
</table>

best wood corner bead with fiber mesh

Plastic profile with integrated fiber mesh for corners and edges.

<table>
<thead>
<tr>
<th>Length</th>
<th>2,50 rm/rail</th>
</tr>
</thead>
</table>

best wood architrave bead with telescope function

With a sealing lip for system connections on doors/windows, etc. High-quality architrave bead that is able to absorb horizontal or vertical movements of the facade. Including a plastic bar with adhesive strips for application of the cover membrane.

<table>
<thead>
<tr>
<th>Length</th>
<th>1,40/2,40 rm/rail</th>
</tr>
</thead>
</table>

best wood spiral anchor

Fastening solution for light attachments to ETICS facades.

<table>
<thead>
<tr>
<th>Packing unit</th>
<th>10 pieces</th>
</tr>
</thead>
</table>

Accessories for render system

best wood fiber reinforcement fabric

System-glass fiber fabric, alkali resistant and with a high tensile strength.

<table>
<thead>
<tr>
<th>Approx. consumption</th>
<th>1,00 lfm²/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh width</td>
<td>4 x 4 mm</td>
</tr>
<tr>
<td>Width</td>
<td>1100 mm</td>
</tr>
</tbody>
</table>

best wood reinforcing arrow

Corner bead for diagonal reinforcement on building openings.

<table>
<thead>
<tr>
<th>Mesh width</th>
<th>4 x 4 mm</th>
</tr>
</thead>
</table>

best wood reveal angle

For diagonal reinforcement at openings in buildings with additional rupture prevention in the corner of the window. Available for a reveal depth of up to 10 cm or for a reveal depth of up to 20 cm.

<table>
<thead>
<tr>
<th>Mesh width</th>
<th>4 x 4 mm</th>
</tr>
</thead>
</table>

best wood corner bead with fiber mesh

Plastic profile with integrated fiber mesh for corners and edges.

<table>
<thead>
<tr>
<th>Length</th>
<th>2,50 rm/rail</th>
</tr>
</thead>
</table>

best wood architrave bead with telescope function

With a sealing lip for system connections on doors/windows, etc. High-quality architrave bead that is able to absorb horizontal or vertical movements of the facade. Including a plastic bar with adhesive strips for application of the cover membrane.

<table>
<thead>
<tr>
<th>Length</th>
<th>1,40/2,40 rm/rail</th>
</tr>
</thead>
</table>

best wood spiral anchor

Fastening solution for light attachments to ETICS facades.

<table>
<thead>
<tr>
<th>Packing unit</th>
<th>10 pieces</th>
</tr>
</thead>
</table>
■ best wood render stop bead

Plastic profiles to form render ends with 6 mm edge.

| Length | 2,00 m/trail |

■ best wood drip edge profile

Plastic profile to form horizontal render ends stops.

| Length | 2,00 m/trail |

■ best wood connection profile made from sheet metal

Clip-on profile to form render connections to sheet metal parts.

| Length | 2,00 m/trail |

■ best wood expansion joint profile for corners

Plastic profile to form movement joints on wall surfaces (inner corners).

| Length | 2,00 m/trail |

■ best wood expansion joint profile for continuous surfaces

Plastic profile to form movement joints on continuous wall surfaces.

| Length | 2,00 m/trail |

■ best wood connector for render profiles

Secure connection between the profile ends. No slipping of the profile at the joints. This allows for a correctly aligned plug up.

| Packing unit | 25 pieces |
Transportation and storage of best wood WALL 140 / 180 boards and best wood render system

For technical reasons and reasons relating to building regulations, as well as warranty considerations, it is important to ensure that only best wood system components or approved materials are used.

The system components should be checked in an incoming goods inspection on delivery arrival and delivery notes and packing specifications should be kept in a safe place for future reference.

Sufficient storage space which is protected from the weather must be available at the place of delivery. The material must always be stored in a dry place where it is protected from UV exposure and mechanical damage.

WALL 140 / 180 products are delivered stacked flat on pallets. A fork lifter or crane with suitable lifting gear must be ready on site for unloading the pallets on delivery. These should also be used for all subsequent transportation of the pallets.

A maximum of two pallets of WALL 140/180 are allowed to be stacked on top of each other. A sufficient number of sleepers must be used for stacking purposes in order to prevent excessive pressure, as such pressure could cause dents in the WALL 140 / 180 boards at the top or bottom.

Pallets with FLEX 50 products must not be stacked on top of each other.

Paste-like plastering components need to be protected from frost and direct sunlight both during transportation and while in storage. In addition the shelf-life given on the containers has to be observed.

Paper packs of plaster must not be stored at the building site without supports underneath and foil covering on top. The shelf-life of 6 months must not be exceeded.

Plastic packs of plaster do not need a foil support underneath. The shelf-life of 12 months must not be exceeded.

General information and instructions for the installation of best wood SCHNEIDER wood fiber insulation boards

Best wood WALL 140 / 180 wood fiber insulation boards must always be stored and installed in dry locations. Once installed the boards have to be protected from direct exposure to moisture.

For the bottom edge connection of the WALL 140 / 180 board, use a base rail. Ensure that a splash water zone of ≥ 30 cm above final ground level is provided in the area of the base unless other additional measures are taken. WALL 140 / 180 boards are not designed to be used in the ground. Regarding the base area, please observe the standard details on page 19.

Splash water zone of ≥ 30 cm without any additional measures.
INSTALLATION GUIDELINES

A second sealing layer in the form of a watertight and heatresistant foil should always be installed beneath window sills. The end pieces of the window sills must be capable to absorb movements in the rendered facade and the window sill. The installation of window sill end pieces with slide bearings is recommended. When installing the window sill, joint insulation tape must be applied to all the connection joints between the sill and the WALL 140 / 180 boards.

For an installation over vertically or horizontally changing substrates, movement/expansion joints must be used.

The render system must be installed not later than 8 weeks after the WALL 140 / 180 boards are installed. If this is not possible, the wall has to be covered with a tarpaulin. Make sure air can circulate behind the tarpaulin.

Countersink wide-back staples 1 mm into the boards. If screw-in insulation board anchors or fasteners are used, the anchor plate must be flushmounted to the surface of the board. An air injected insulation must be applied before plastering.

Installation elements or inlets (e.g. solar pipes ...), for which temperatures of > 80°C can be expected, must not be installed without any additional fire precautions into the best wood SCHNEIDER wood fiber installation materials.

All standard cutting equipment for cutting wood, such as bench-type circular saws and hand-held circular saws, can be used to cut WALL 140 / 180 boards to size. The dust which is generated when cutting WALL 140 / 180 boards, should be extracted by means of a vacuum extractor.

Make sure that the groove of the board always faces downwards when installing Wall 140 / 180. This ensures that rainwater is able to run off effectively during construction and will not remain in the recess. WALL 140 / 180 boards can be used on both sides.

Avoid board edges at the corners of window openings, otherwise there is a risk of notch cracks in this area. Install the boards on a staggered basis with a vertical offset of at least 25 cm to each other (avoid cross joints). The edges of the board must be precisely fitted together at all joint areas and should be preferably pressed tightly together.

A second sealing layer in the form of a watertight and heatresistant foil should always be installed beneath window sills. The end pieces of the window sills must be capable to absorb movements in the rendered facade and the window sill. The installation of window sill end pieces with slide bearings is recommended. When installing the window sill, joint insulation tape must be applied to all the connection joints between the sill and the WALL 140 / 180 boards.

For an installation over vertically or horizontally changing substrates, movement/expansion joints must be used.

The render system must be installed not later than 8 weeks after the WALL 140 / 180 boards are installed. If this is not possible, the wall has to be covered with a tarpaulin. Make sure air can circulate behind the tarpaulin.

Countersink wide-back staples 1 mm into the boards. If screw-in insulation board anchors or fasteners are used, the anchor plate must be flushmounted to the surface of the board. An air injected insulation must be applied before plastering.

Installation elements or inlets (e.g. solar pipes ...), for which temperatures of > 80°C can be expected, must not be installed without any additional fire precautions into the best wood SCHNEIDER wood fiber installation materials.

All standard cutting equipment for cutting wood, such as bench-type circular saws and hand-held circular saws, can be used to cut WALL 140 / 180 boards to size. The dust which is generated when cutting WALL 140 / 180 boards, should be extracted by means of a vacuum extractor.

Make sure that the groove of the board always faces downwards when installing Wall 140 / 180. This ensures that rainwater is able to run off effectively during construction and will not remain in the recess. WALL 140 / 180 boards can be used on both sides.

Avoid board edges at the corners of window openings, otherwise there is a risk of notch cracks in this area. Install the boards on a staggered basis with a vertical offset of at least 25 cm to each other (avoid cross joints). The edges of the board must be precisely fitted together at all joint areas and should be preferably pressed tightly together.

Joints of up to 2 mm at the board edges can be plastered over. Joints of 2-5 mm are to be sealed with best wood FDM adhesive sealant for joints. Seal all joints wider than 5 mm with strips of the best wood WALL 140 / 180 wood fiber insulation board. For outer corners and window edges the WALL 140 / 180 boards must have a stump edge. Any tongue and groove sections must be cut back before the installation of the boards.

All connections with adjoining elements of the building must be tightly sealed against driving rain and wind by means of render stop connection profiles and joint insulation tape.
Installation of WALL 180 in timber frame constructions

■ Checking the substrate

Examine the substrate before the installation of WALL 180 boards. The timber frame construction must be dry (wood moisture content below 18%), clean and level (no differences in height).

■ Fastening the base rail

The base section of the base rail must be aligned horizontally and fastened to the wooden sill, leaving a space of approx. 30 cm and must be connected with butt joint connectors at all longitudinal ends.

Connect the base sections at the outer and inner corners with miter-cut joints. For the clip-on mesh rails, pre-assembled corner connecting profiles are available. Alternatively, they can also be mitercut.

All butt joints on the base profiles must be sealed with durable, weatherproof and temperature-resistant adhesive tape, e.g. Tescon Vana. The best wood WALL 180 boards must be installed at a minimum of 30 cm above final ground level unless other additional measures are taken.

1. Base rail must be aligned and fastened horizontally.
2. Installation of butt joint connectors at all longitudinal ends.
4. Splash zone ≥ 30 cm without additional measures.
**Installing the first row of WALL 180 boards in the base area**

The groove at the bottom of the boards in the first row of WALL 180 boards has to be cut off and the boards then have to be fitted fully into the base rail. It is recommended to use a marking chord to check that the top of the first row is horizontally aligned in the right way.

![Cut off the groove side.](image1)

![Horizontal alignment of the first row of panels by means of a marking chord.](image2)

**Installation of the WALL 180**

Fasten the WALL 180 boards directly to timber studs, which must have a width of at least 60 mm, using wide-back staples or screw-in anchors for insulation boards. The number of fasteners required must be determined in accordance with DIN 1055-4 and they must be distributed accordingly over the timber stud – see installation example for WALL 180 boards for timber-framed constructions. Each WALL 180 board must be fastened to at least two timber studs.

The edges of the boards must be precisely fitted to all joint areas and should possibly be pressed tightly together. In the area of storey joints it is essential that open joints are avoided, because they might cause the formation of creases. Alternatively, fitting pieces which are fastened to the sill and head rail may be used – see detail of the ceiling joint. [page. 58].

The fasteners need to be anchored in a sufficient depth to the timber studs. The effective minimum penetration depth of the wide-back staples is \( \geq 30\, \text{mm} \) and for the screw-in anchors for insulation boards it is \( \geq 35\, \text{mm} \).

The boards have to be installed on a staggered basis with a minimum offset of 25 cm vertically to each other. The boards do not need to have indented joints at the outer corners, but they must be precisely fitted together. Joints should be avoided.

**Maximum distance between studs for an application of WALL 180 in timber frame constructions**

<table>
<thead>
<tr>
<th>Board thickness [mm]</th>
<th>Max. distance between studs [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>625</td>
</tr>
<tr>
<td>60–160</td>
<td>833</td>
</tr>
</tbody>
</table>

**Maximum distance between beams for an application of WALL 180 under ceilings**

<table>
<thead>
<tr>
<th>Board thickness [mm]</th>
<th>Max. distance between beams [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–160</td>
<td>416</td>
</tr>
</tbody>
</table>
Installation of WALL 140 on continuous and load-bearing solid timber substrates

Checking the substrate

Examine the substrate before starting to install the WALL 140 boards. The solid timber substrate must be dry (wood moisture content below 18%), clean and level (no differences in height).

Fastening the base rail

The base section of the base rail must be aligned horizontally and fastened to the solid timber substrate with a spacing of approx. 30 cm. Furthermore, it must be connected with butt joint connectors at all the longitudinal ends.

At the outer and inner corners, join the base sections together with miter-cut joints. For the clip-on mesh rails, pre-assembled corner connecting profiles are available. Alternatively, they can also be mitercut.

All butt joints on the base profiles must be sealed with durable, weatherproof and temperature-stable adhesive tape, e.g. Tescon Vana. The best wood WALL 140 boards must be installed at a minimum of 30 cm above final ground level unless other additional measures are taken.

Installing the first row of WALL 140 boards in the area of the base

The groove at the bottom of the boards in the first row of WALL 140 boards has to be cut off and then the boards have to be fitted fully into the base rail. It is recommended to use a marking chord to check that the top of the first row is horizontally aligned in the right way.

Installing the WALL 140 boards

Fasten the WALL 140 boards directly to the load-bearing solid timber substrate using wide-back staples or screw-in anchors for insulation boards. The number of fasteners required must be determined in accordance with DIN 1055-4 and they have to be distributed accordingly over the WALL 140 — see installation example for WALL 140 boards on load-bearing solid timber substrates (page 27/28).

Take care to ensure that the WALL 140 boards do not move apart when using screw-in anchors for insulation boards for fastening them at the butt joints.

The edges of the boards must be precisely fitted to all joint areas and should possibly be pressed tightly together.

The fasteners need to be anchored to a sufficient depth in the solid timber substrate. The effective minimum penetration depth of wide-back staples is ≥ 30 mm and for screw-in anchors for insulation boards it is ≥ 35 mm. The boards must be installed on a staggered basis with a minimum offset of 25 cm vertically to each other. The boards do not need to have indented joints at the outer corners, but they must be precisely fitted together. Joints should be avoided.

Alternatively to the WALL 140 board with a tongue and-groove edge, a WALL 140 board with a stump edge can also be fastened to the solid timber substrate.
Installation of WALL 140 on solid mineral substrates

Checking the substrate

Examine the substrate before starting to install the WALL 140 boards. The substrate must be dry, clean and level. Remove all loose plaster and cover over the flaws with suitable material. Areas of unevenness in the substrate of up to 10 mm can be effectively smoothed out with best wood adhesive and reinforcing mortar. Larger areas of unevenness need to be smoothed out with leveling plaster or similar.

Remove all loose plaster. Clean the substrate.

Closure of flaws.

The wall temperature and ambient temperature must be a minimum of +5°. For renovation works on older buildings, the structural conditions of the building need to be investigated with particular regard to structural and physical considerations in relation to the planned ETICS. The masonry must be free of rising damp.
Fastening the base rail

The base section of the base rail must be aligned horizontally and fastened to the solid timber substrate with spacing of approx. 30 cm and must be connected with butt joint connectors at all the longitudinal ends. Every unevenness in the substrate has to be levelled out by means of a distance adjustment (e.g. plastic plate).

At the outer and inner corners, join the base sections together with miter-cut joints. For the clip-on mesh rails, pre-assembled corner connecting profiles are available. Alternatively, they can also be mitercut.

All butt joints on the base profiles must be sealed with durable, weatherproof and temperature-stable adhesive tape, e.g. Tescon Vana. The best wood WALL 140 boards must be installed at a minimum of 30 cm above the final ground level unless other additional measures are taken.

Splash zone ≥ 30 cm without any additional measures.
Bonding the first row of WALL 140 in the base area

The WALL 140 boards (only boards with stump profile) are glued by means of the spot-and-bead method. Using this method, a bead of adhesive mortar of about 5 cm in width is applied all around the edge of the WALL 140 board. 2-3 additional spots of adhesive mortar are applied in the middle of the board. At least 40% of the board’s surface have to be glued. This method of bonding prevents ventilation at the back of the insulation material and the convective entry of moisture to the ETICS.

Installation of the WALL 140

For the installation of the first row of boards, the WALL 140 board has to be fitted fully into the base rail. Particular care needs to be taken to ensure that no adhesive gets between the vertical edge of the base rail and the Wall 140 board.

It is recommended to use a marking chord to check that the top of the first row is horizontally aligned in the right way.

The WALL 140 board is applied and fitted to the base by means of a light sliding movement. To ensure a firm contact with the wall, a rubber hammer can be used to tap the board against the wall. The boards must be installed on a staggered basis with a minimum vertical offset of 25 cm to each other.
Any adhesive emerging from the sides must be removed immediately after the installation of the boards. Make sure that no adhesive gets between the butt joints of the boards. Also make sure that the boards are installed with a precise fit. The boards must have indented joints at the outer corners.

Fixing of the WALL 140 by means of fastening anchors

Additionally to the fixing by means of an adhesive, the WALL 140 boards also have to be fastened by means of screw-in anchors Ejotherm STR U 2G for insulation boards. The adhesive has to be completely dry. The number of fasteners required is determined in accordance with DIN 1055-4 and they have to be distributed accordingly over the WALL 140 — see installation example for WALL 140 boards on solid mineral substrates. The screw-in anchors for insulation boards have to be fastened in the surface area of the boards only, not in the joints between the boards.

The minimum penetration depth of the insulation board anchors in service category A-D is \( \geq 25 \) mm and for insulation board anchors in service category E it is \( \geq 65 \) mm.

After the application of the insulation board anchors, the closing plug has to be flushmounted with the anchor plate into the screw opening.
## Minimum fastener length

<table>
<thead>
<tr>
<th>Installation substrate</th>
<th>Insulation material thickness WALL 140/180 in [mm]</th>
<th>Timber frame constructions or solid timber substrates</th>
<th>Timber frame constructions or solid timber substrates</th>
<th>Mineral substrates in new buildings</th>
<th>Mineral substrates in existing buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haubold or equivalent wide-back staples, min. length [mm]</td>
<td>Screw-in anchor for insulation boards Ejotherm STR H, min. length in [mm]</td>
<td>Screw-in anchor for insulation boards STR U 2 G, min. length in [mm]</td>
<td>Screw-in anchor for insulation boards STR U 2 G, min. length in [mm]</td>
<td>Screw-in anchor for insulation boards STR U 2 G, min. length in [mm]</td>
</tr>
<tr>
<td>40</td>
<td>75</td>
<td>80</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>100</td>
<td>115</td>
<td>135</td>
<td>115</td>
</tr>
<tr>
<td>80</td>
<td>110</td>
<td>120</td>
<td>115</td>
<td>155</td>
<td>135</td>
</tr>
<tr>
<td>100</td>
<td>130</td>
<td>140</td>
<td>135</td>
<td>175</td>
<td>155</td>
</tr>
<tr>
<td>120</td>
<td>150</td>
<td>160</td>
<td>155</td>
<td>195</td>
<td>175</td>
</tr>
<tr>
<td>140</td>
<td>180</td>
<td>180</td>
<td>175</td>
<td>215</td>
<td>195</td>
</tr>
<tr>
<td>160</td>
<td>200</td>
<td>200</td>
<td>195</td>
<td>235</td>
<td>215</td>
</tr>
<tr>
<td>180</td>
<td>–</td>
<td>220</td>
<td>215</td>
<td>255</td>
<td>235</td>
</tr>
<tr>
<td>200</td>
<td>–</td>
<td>240</td>
<td>235</td>
<td>275</td>
<td>255</td>
</tr>
<tr>
<td>Service category</td>
<td>A–D</td>
<td>E</td>
<td>A–D</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Approved insulation material thicknesses for ETICS / for WALL 140, 60-160 mm and for WALL 180, 60-100 mm.

1) for a 10 mm layer of adhesive | 2) for a 10 mm layer of adhesive and for 20 mm of existing plaster or leveling plaster | 3) for the moment not in ETICS approval

## Service category

A: Standard concrete and concrete facing layers  
B: Clay masonry units, solid clay masonry units, concrete solid bricks and lightweight concrete solid bricks  
C: Vertically perforated clay masonry units, perforated calcium-silicate bricks and lightweight concrete hollow blocks  
D: Lightweight aggregate concrete with open structure  
E: Autoclaved aerated concrete (e.g. Ytong)

The correct determination of the anchor length is essential to guarantee the highest possible fastening safety. The object specific conditions always have to be taken into consideration. The required anchor length depends on the effective anchoring depth + tolerance compensation + insulation material thickness. The tolerance compensation is based on the non-load-bearing layers (e.g. existing plaster, tile facings, etc.), the thickness of the adhesive mortar layer and the additional layer for smoothing out uneven areas on the wall.
**Minimum quantity of fasteners required for an installation of WALL 180 in timber frame constructions**

<table>
<thead>
<tr>
<th>Minimum quantity of fasteners per m²</th>
<th>Wind pressure $w_0$ according to DIN 1055-4 [kN/m²]</th>
<th>Max. allowed vertical distance between wide-back staples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw-in anchor for insulation boards STR H</td>
<td>-1,00</td>
<td>-1,60</td>
</tr>
<tr>
<td>Wide-back staple</td>
<td>6 anchors/m²</td>
<td>8 anchors/m²</td>
</tr>
</tbody>
</table>

**Installation example for studs with dimension of 62.5 cm between units**

- 6 or 8 anchors/m²
- 3 anchors/stud
- 6 staples/m²
- 6 staples/stud

**Installation example for studs with dimension of 83,3 cm between units**

- 6 anchors/m²
- 3 anchors/stud
- 8 anchors/m²
- 4 anchors/stud
- 16 staples/m²
- 8 staples/stud
Minimum quantity of fasteners required for an installation of WALL 140 on continuous and load-bearing solid timber substrates

<table>
<thead>
<tr>
<th>Minimum quantity of fasteners per m²</th>
<th>Wind pressure $w_0$ according to DIN 1055-4 [kN/m²]</th>
<th>Max. allowed vertical distance between wide-back staples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw-in anchor for insulation boards STR H</td>
<td>-1,00 10 14</td>
<td>-1,00 10 14</td>
</tr>
<tr>
<td>Wide-back staple</td>
<td>-1,60 16 20 120 mm</td>
<td>-1,60 16 20 120 mm</td>
</tr>
</tbody>
</table>

Minimum quantity of fasteners per board

<table>
<thead>
<tr>
<th>Minimum quantity of fasteners per board</th>
<th>Wind pressure $w_0$ according to DIN 1055-4 [kN/m²]</th>
<th>Board formats in [mm]</th>
<th>Screw-in anchor for insulation boards STR H</th>
<th>Wide-back staple</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1,00 10 14</td>
<td>580/600 x 800</td>
<td>5 7</td>
<td>8 10</td>
</tr>
<tr>
<td></td>
<td>-1,00 10 14</td>
<td>580/600 x 1250</td>
<td>8 11</td>
<td>12 15</td>
</tr>
<tr>
<td></td>
<td>-1,00 10 14</td>
<td>580/600 x 1500</td>
<td>9 13</td>
<td>15 18</td>
</tr>
<tr>
<td></td>
<td>-1,00 10 14</td>
<td>580/600 x 2000</td>
<td>12 17</td>
<td>20 24</td>
</tr>
</tbody>
</table>

Installation examples for screw-in anchors STR H

5 anchors/board

8 anchors/board

9 anchors/board

12 anchors/board
Installation examples for wide-back staples

- 8 staples/board
- 12 staples/board
- 15 staples/board
- 20 staples/board
Minimum quantity of fasteners required for an installation of WALL 140 on mineral substrates

<table>
<thead>
<tr>
<th>Minimum quantity of fasteners per board (per m²)</th>
<th>Wind pressure ( w_e ) according to DIN 1055-4 [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−0,77</td>
</tr>
<tr>
<td>Board formats in mm</td>
<td></td>
</tr>
<tr>
<td>600 x 800</td>
<td>3 (6,3)</td>
</tr>
<tr>
<td>600 x 1250</td>
<td>3 (4,0)</td>
</tr>
<tr>
<td>600 x 1500</td>
<td>4 (4,4)</td>
</tr>
<tr>
<td>600 x 2000</td>
<td>5 (4,2)</td>
</tr>
</tbody>
</table>

The screw-in anchors STR U 2G have to be fastened in the surface area of the WALL 140 boards only, not in the joints between the boards.

Installation examples for the screw-in anchor STR U 2G

3 anchors/board

4 anchors/board

5 anchors/board

7 anchors/board

8 anchors/board

10 anchors/board
**Window connection and window sill**

**General information**

In the window area, special attention must be paid to the correct connection of the reveal area and the window sill. This is very important with regard to the weather protection. The components of the complete system, consisting of facade, window, sun protection and window sill have to be optimally coordinated amongst each other. Therefore, a professional and detailed planning before the installation is essential. This is the only way to make sure, that inadequate or improvised “on site solutions” are avoided.

In the following, it is important to make sure that the window sill has a minimum overhang of 40 mm over the finished coating of plaster. Furthermore, it is necessary that the window sill slopes forward with a minimum gradient of 5°. Movements of the window sill (caused by thermal activity and effects of wind/suction) must not be transferred into the facade system, but they have to be absorbed by slide bearings in the end pieces of the window sill.

The lateral sides of the window sill end pieces must be wide enough for the fitting of a joint insulation tape (minimum 25 mm). Hold-down devices for the window sill have to be installed depending on the range and length of the window sill. The recommendations of the manufacturer of the window sills have to be observed.

A second sealing layer by means of a watertight and heatresistant foil should always be installed beneath window sills. The window sill must not be walked on unless suitable additional support is provided. The connection of the WALL 140/180 boards to the window as well as all connection joints to the window sill or window sill end pieces, do always have to be made watertight against driving rain by means of suitable architrave beads and joint insulation tape.

**Window connection and installation of the window sill**

After the standardized installation of the window into the wall, the wood fiber insulation board for the window sill area has to be cut at an angle to match the gradient of the window sill (minimum 5°) before installation. When installed, the distance between the WALL 140 / 180 board and the window sill should be approximately 8 mm.

At the lateral window connection the WALL 140 / 180 board needs to be set back by the thickness of the reveal board which is to be installed later.

The advantage of using reveal boards is, that joint insulation tape can be fitted easily and precisely (flush with the front edge).

For an installation of roller shutter boxes or venetian blinds, the special details for application have to be observed — see detailed drawings.

In the parapet area, the insulation board is cut to the inclination of the window sill.
Before the installation of the window sill, the joint insulation tape illmod 15/5-10 has to be applied on the front edge of the WALL 140/180 under the window sill and laterally up to the level of the window sill end piece. The joint insulation tape under the window sill should be suspendet for approx. 10 mm in the middle of the window.

On the back of the window sill connection profile a joint insulation tape illmod 15/3-7 is applied. The tape seals the window frames and window sills against driving rain. It is important to make sure that the joint insulation tape is applied right at the very top of the vertical edge, otherwise a channel will be formed which will direct the water laterally to the window reveal.

Alternatively, a window sill system that is delivered already with sealing lip on the upstand of the window sills backside can be used. For this version no joint insulation tape between window frame and the upstand of the window sill is necessary.

For the fastening of the window sill, only suitable fasteners (e.g. non-corrosive) which are compatible with the system have to be used.
Movements of the window sill caused by thermal activity need to be taken into consideration when fastening, e.g. elongated holes could be used. The window sill should be screwed to the window in such a way that the rear vertical edge of the window sill slots into the drip edge of the window frame.

On windows with aluminum facings in particular it is essential that the aluminium facing is backed, because water has to drain from it and the mitered joints onto a drip edge. Drainage openings on the window must not be blocked off by the installation of the window sill. It is not recommendable to install the window sill on the window frame with stump joints. The side window frame grooves and the facing grooves should be sealed with suitable sealing compound on the bottom ends if they have not already been sealed by the window manufacturer by structural or prefabrication means. This work is the responsibility of the window fitter.

After the window sill has been installed, the side reveal boards can be installed. These should be cut to length with an angle-cut at the bottom to match the angle of the window sill. After the reveal board has been cut to length, apply joint insulation tape along the parts facing the window and window sill end profile.

Take particular care here to ensure that the joint insulation tape is expertly applied. The joint insulation tape must be fitted with stump joints in the corners, with pressure, and must not be simply bent around the corners. As a general principle the joint installation must always be fitted with the application of pressure, not by pulling it, otherwise there is a risk of it re-setting to its original length later.
Once all the joint insulation tapes have been expertly applied to the reveal board, the reveal board should be bonded to the WALL 140 / 180 boards using best wood FDM adhesive sealant for joints. Non-corrosive screws should then be used to provide the reveal board with additional fastening. These will prevent the reveal boards from moving in response to the swelling of the joint insulation tape.

After the reveal board has been installed, the lateral side of the window sill end piece should still overhang approx. 10 mm to provide sufficient space for the render layer in the window reveal.

After the plaster has been applied, the lateral side of the window sill end piece should be plastered over flush to the surface.
Important information

When installing the window sill, it is important to make sure that all joints and openings which are produced as a result of the construction are protected against water ingress. See, for example, the constructional joint between the bottom edge of the window frame and the top edge of the weather panel end piece.

Take particular care with mitered, welded synthetic windows. Here there is a risk of water ingress into the building structure through the miter-joint of the window frame.

This miter-joint should be sealed with suitable material or should be avoided at the outset by appropriate constructional measures.

Guide rails for solar protection elements and roller shutters must drain directly onto the window sill and must be positioned on the inside of the side vertical edges of the window sill end piece. The guide rails must finish approx. 8 mm before the top edge of the window sill.
Installation guidelines for the best wood render system

General information

When the best wood WALL 140 / 180 wood fiber insulation boards have been installed, they can be left exposed to the weather for a period of up to 8 weeks thanks to their water repellent finishing. However, they do require permanent protection against UV exposure and moisture. If this cannot be guaranteed (small roof overhang, exposed location), we recommend that the facade should be protected with a diffusion-permeable underlay immediately after installation, or that the base coat of plaster be applied as fast as possible.

The ambient temperature and the temperature of the substrate must not be below +5°C at any time during the application and drying of the plastering and paint products. The air temperature must not exceed 30°. Frost should be avoided for at least four days. No other materials are allowed to be mixed in and appropriate measures should be taken to protect the fresh plaster from the influence of the weather (e.g. strong sunshine and heavy wind and rain). It is recommended to hang tarpaulins from the scaffolding. The substrates must be dry, absorbent and free of release agents, dust and loose particles.

Mineral types of plaster produce an alkaline reaction on contact with water and can therefore irritate the eyes and skin. The material must be kept away from children and contact with the eyes and skin must be avoided. Avoid generating dust. Suitable protective gloves, glasses and/or a face mask should always be used when working with the materials. If the materials do come into contact with eyes, the eyes of the affected person must be rinsed out thoroughly with water and a doctor should be consulted. It is prohibited to allow waterborne plasters to enter surface waters or the sewage system. Plaster which has fully hardened can be disposed of as building rubble.

Checking the substrate

Immediately before the reinforcement layer is applied, the complete facade of best wood WALL 140/180 wood fiber insulation boards should be examined to check its suitability. The substrate must be flat, dry, stable and clean. The board moisture content must not exceed 13% of the weight (if the setting on the electronic moisture meter is for spruce/pine, the maximum permitted value is 19.5%).

Board moisture content ≤ 19.5% with a setting for spruce/pine.

It is essential that any differences in level at the butt joints between the boards are smoothed out by sanding, e.g. with a K40 sanding board. The sanding dust which is generated must be completely removed from the surfaces of the boards.
Joints of up to 2 mm at the board edges can be plastered over. Joints of 2-5 mm are to be sealed with best wood FDM adhesive sealant for joints. Seal all joints greater than 5 mm with strips of best wood WALL 140 / 180 wood fiber insulation board.

Screw-in anchors for insulation boards must be fitted flush with the surface of the best wood WALL 140 / 180 wood fiber insulation boards. Wide-back staples should be countersunk approx. 1 mm into the best wood WALL 180.

**Installation of additional reinforcement**

Before the reinforcement for the entire surface is installed, corner beads with fiber mesh have to be embedded in the compound on all the outer corners.
In the area of the connections to window and door frames, architrave beads with telescope function have to be embedded.

1. Adhesion of the architrave bead with telescope function

2. Architrave bead with telescope function sits flush to the inner edge of the window sill end piece.

3. Architrave bead mitered in the edge.

4. Application of adhesive and reinforcing mortar (UP) to the window reveal and the outer edge.

5. Embedding of the architrave bead with telescope function.

6. Application of the corner bead with fiber mesh.

7. Horizontal and vertical alignment of the corner bead with fiber mesh.

8.ATTENTION

The adhesion has to be checked before an application of the architrave bead with telescope function! Do install the beads only when an adequate adhesion is guaranteed. Do only use cleaning agents in coordination with the window manufacturer.
Contemporaneously, reveal angles or rather corner beads for diagonal reinforcement on building openings are embedded.

Furthermore, all special render profiles such as drip edge profiles, render stop beads, connection profiles made from sheet metal and expansion joint profiles for corners for continuous surfaces are pre-embedded.

- Application of the base coat and fiber reinforcement mesh in two steps

- Application of the base coat

After completion of the preparation work of embedding the render stop connection profiles and the diagonal reinforcement, best wood adhesive and reinforcing mortar should be applied to the best wood WALL 140 / 180 wood fiber insulation boards either by machine or by hand with a 4-6 mm serrated trowel at an angle of approx. 45° to the surface of the boards, combing through the mortar to form a serrated layer. The resultant layer must be 3-4 mm thick. The serrated form of the mortar layer ensures that the fiber reinforcement mesh is embedded in a layer which is of a sufficient thickness of at least 5 mm in the outer third of the reinforcement layer. Furthermore, the application and hardening of the serrated layer of mortar prevents lignin from bleeding through and ensures that the render baseboard is protected against the weather for up to 5 months. This requires as a precondition that the connections and joints are correctly sealed to ensure that the timber structure and best wood WALL 140 / 180 wood fiber insulation boards are effectively protected.
Embedding the fiber reinforcement mesh

After the serrated mortar layer has dried, the fiber reinforcement mesh can be embedded. In this case the mortar has to be applied crosswise using a trowel which is moved flat across the surface. The fiber reinforcement mesh should be embedded in the crosswise mortar while it is still wet and the edges of the fiber mesh must overlap by a minimum of 10 cm.

The fiber reinforcement mesh then has to be covered over with mortar on a wet on wet basis until the fiber mesh is completely covered at every point. Avoid air pockets. Sand off any imperfections after the mortar has dried. The total thickness of the serrated layer of mortar, including the embedded fiber reinforcement mesh, should be approx. 6-7 mm.

Application of the base coat and fiber reinforcement mesh in one step

It is possible to apply the base coat/serrated mortar layer and the fiber reinforcement mesh in one single step.

After completion of the preparation work of embedding the render stop connection profiles and the diagonal reinforcement, best wood adhesive and reinforcing mortar should be applied to the best wood WALL 140 / 180 wood fiber insulation boards either manually or with mixing pumps/plastering machines and combed through with a 10 mm serrated trowel. Care must be taken to ensure that the material is evenly distributed.

The fiber reinforcement mesh should be embedded in the material while it is still wet and the edges of the fiber mesh must overlap by a minimum of 10 cm. The fiber reinforcement mesh then has to be covered over with mortar on a wet on wet basis until the fiber mesh is completely covered at every point. Avoid air pockets. Sand off any imperfections after the mortar has dried. The total thickness of the layer, including the embedded fiber reinforcement mesh, should be approx. 6-7 mm.

APPLICATION

Application of vertical coating.

Application of best wood fiber reinforcement fabric.

Wet embedding of the best wood fiber reinforcement fabric.

Embedding of the best wood fiber reinforcement fabric.

**INFORMATION**

If the base coat/serrated mortar layer is applied in a single step, the person doing the work must ensure that the thicknesses of the layers are adhered to and that the fiber reinforcement mesh is positioned in the outer third of the coat.
Application of the final render

Before the final render is applied, the base coat must have hardened and dried. For darker facades it is recommendable to apply the final render ready-colored. All of the material required for each area to be plastered has to be prepared in a single step.

To avoid overlapped edges in the surface of the plaster, a sufficient number of workers need to be deployed on each section of the scaffolding and the section of plaster should be completed from corner to corner in a single operation. Excess material should be removed by scraping it off with a trowel at a steep angle. All uneven areas which are created should be corrected straight away.

Silicone-resin final render, which comes in tubs, needs to be thoroughly stirred and have water added if necessary to achieve the right consistency. Use a stainless steel trowel to apply the plaster with a coat not exceeding the grain thickness, and then texture the surface afterwards.

Mineral final render comes in sacks and can be processed with all standard types of mixing pumps and plastering machines or by hand. This should be applied with a sponge float or plastic float. The mineral final render of a scraped surface plaster texture should be rubbed using a circular motion.

1. The final render is applied by means of a trowel and then skimmed to grain size.

2. Structuring of the final render by means of a trowel.

3. Ready structured plaster surface.
Structures and layer thicknesses in the best wood layer system

1. best wood WALL 140/180
2. Serrated mortar layer
3. Fiber reinforcement mesh
4. Plaster and paint
 INSTALLATION GUIDELINES

■ Application of the leveling coat with best wood silicone resin paint

The application of a leveling coat is always recommended because it lends surfaces a uniform appearance and also provides protection against the weather. Moreover, it helps slow down the rate at which material is lost from the render surface and also reduces the extent to which the surface is susceptible to the accumulation of dirt.

Leveling coat is an essential requirement for mineral final render coats because of their susceptibility to efflorescence or cloudiness when they dry. Coating with paint levels out this appearance while significantly improving water repellence at the same time. Silicone-resin plasters do not have to be coated over, but the leveling coat still provides the facade with valuable additional protection nevertheless. If you decide not to apply a leveling coat, it is recommended for reasons of appearance and for technical reasons that you apply a leveling primer coat to the whole surface of the substrate before applying the silicone-resin final render.

In terms of the color scheme for the ETICS facade, the selected color must have a lightness value (LV) of ≥ 20%. Dark colors can lead to high levels of thermal stress and are therefore not permitted for the best wood external thermal insulation composite system. The final render must have thoroughly dried before the paint is applied. Silicone-resin paint can be applied by hand (by brush or roller) or with an airless spray gun. Silicone-resin paint should be diluted with a maximum of 10% water and should not be applied in direct sunlight.

The siliconeresin paint is fungicide/algicide adjusted. The use of this additive inhibits or retards algae and fungal attack. On the basis of the current state-of-the-art in technology it is not possible to guarantee permanent protection because, among other things, the resistance of biocidal treatment systems has to be time-limited in order to meet environmental biodegradability requirements.

Coats of paint on facades generally have to be applied in two steps.

■ Maintenance of the facade

Facade surfaces are permanently exposed to the weather and therefore need to be inspected and maintained at regular intervals. Particular attention needs to be given to all the connections between different components of the facade (e.g. window reveal connection, window sill connection, etc.).

This weather-related ageing varies considerably depending on the alignment and location of the building and on design measures taken to reduce the stress on the facade (roof overhang, protection by trees and bushes).

With regard to maintenance intervals, there is no difference between wood fiber ETICS and other types of ETICS facades or other rendered facades. All best wood final renders provide effective resistance to the influence of the weather. This is further enhanced with the application of the leveling coat. The amount of time before the first maintenance coat is required can therefore be considerably extended as a result. The products used for maintenance coats must be compatible with the system.
best wood spiral anchor

Fastening solution for light attachments to ETICS facades; recommended load: max. 5 kg per fixing point; free of thermal bridges; a subsequent installation through the plaster layer is possible: pre-drill with an 8 mm drill trough the covering plaster, apply FDM under anchor plate and screw-in (TORX T40). Spiral anchor should be sealed to the plaster facade with FDM, afterwards the screw (4-5 mm) has to be screwed-in and the attachment has to be fixed.

Installation instructions for unrendered wood fiber insulation boards best wood WALL 140, WALL 180 and ROOM 140

1. Pre-drilling of the unrendered wood fiber insulation board by means of an 8 mm - wood drill.
2. Insertion of the spiral anchor by means of a TORX T40 into the unrendered wood fiber insulation board.
3. Flushmounting of the spiral anchor
4. Fastening of the attachment piece by means of a 4-5 mm screw.

Installation instructions for rendered wood fiber insulation boards best wood WALL 140, WALL 180 and ROOM 140

1. Pre-drilling of the rendered wood fiber insulation board by means of an 8 mm - wood drill.
2. Application of best wood FDM adhesive sealant for joints under the anchor plate.
3. Application of best wood FDM adhesive sealant for joints for sealing purpose.
4. Flush insertion of the spiral anchor by means of a TORX T40 into the rendered wood fiber insulation board.
5. Remove any excess FDM between plaster and spiral anchor.
6. Fastening of the attachment piece by means of a 4-5 mm screw.
- **Base point**

- Outside splash water range with ≥ 30 cm between ground surface and base point

---

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing on the base point
4. Balancing mortar without shrinkage
5. Sealing according to DIN 18195-4
6. Best wood render system
7. Best wood WALL 180
8. Best wood base rail
9. Joint insulation tape Illmod 15/5-10
10. Perimeter insulation/base insulation panel
11. Base reinforcing mortar
12. Mineral seal
13. Knob-protection film

---

8/2015

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
■ Splash area on the gravel and ≥ 15 cm distance between ground edge and lower edge

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing on the base point
4. Balancing mortar without shrinkage
5. Sealing according to DIN 18195-4
6. Best wood render system
7. Best wood WALL 180
8. Best wood base rail
9. Joint insulation tape Illmod 15/5-10
10. Perimeter insulation/base insulation pane
11. Base reinforcing mortar
12. Mineral seal
13. Knob-protection film
14. Gravel with drainage

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
CONSTRUCTION DETAILS

- Splash area on the gravel and ≥ 5 cm distance between ground edge and lower edge

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing on the base point
4. Balancing mortar without shrinkage
5. Sealing according to DIN 18195-4
6. Best wood render system
7. Best wood WALL 180
8. Front sides glued with best wood FDM adhesive sealant for joints
9. Best wood perimeter insulation
10. Cement-bound chipboard
11. Vertical sealing according to DIN 18195-4, e.g. sealing system of Ceresit with pre-painting BT26 and dense ground BT21
12. Joint insulation tape Illmod 15/5-10
13. Best wood base rail
14. Base reinforcing mortar
15. Perimeter insulation/base insulation panel
16. Mineral seal
17. Knob-protection film
18. Gravel with drainage

8/2015
This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
- **Base point; patio door level with grating**

1. Balancing mortar without shrinkage
2. Vapor barrier/airtight sealing on the base point
3. Sealing according to DIN 18195-4
4. Joint insulation tape Illmod 15/3-7
5. Second sealing layer beneath window sill
6. Grating
7. Window sill
8. Joint insulation tape Illmod 15/5-10
9. Best wood render system
10. Best wood perimeter insulation
11. Best wood base rail
12. Base reinforcing mortar
13. Perimeter insulation/base insulation panel
14. Mineral seal
15. Knob-protection film
16. Gravel with drainage

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
■ Window connection

■ Window connection with 20 mm reveal board

1 best wood render system
2 best wood WALL 180
3 best wood reveal board bonded with best wood FDM adhesive sealant glued to WALL 180
4 best wood reveal board
5 Second sealing layer beneath window sill
6 Joint insulation tape Illmod 15/5-10
7 Window sill end profile with slide bearing
8 Window sill
9 best wood corner bead with fiber mesh
10 Screw from stainless steel
11 best wood architrave bead with telescope function
12 Timber frame construction with best wood FLEX 50
13 Wood-based panel (e.g. OSB)
14 Vapor barrier/airtight sealing
15 Joint insulation tape Illmod 15/3-7

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Window connection with 40 mm reveal board

- Window connection with 40 mm reveal board

1. best wood render system
2. best wood WALL 180
3. best wood reveal board bonded with best wood FDM adhesive sealant glued to WALL 180
4. best wood reveal board in the area of the window sill end profile
5. Second sealing layer beneath window sill
6. Joint insulation tape Illmod 15/5-10
7. Window sill end profile with slide bearing
8. Window sill
9. best wood corner bead with fiber mesh
10. Screw from stainless steel
11. best wood architrave bead with telescope function
12. Timber frame construction with best wood FLEX 50
13. Wood-based panel (e.g. OSB)
14. Vapor barrier/airtight sealing
15. Joint insulation tape Illmod 15/3-7
Window connection without reveal board and with roller shutter guide rail

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>best wood render system</td>
</tr>
<tr>
<td>2</td>
<td>best wood reveal board in the area of the window sill end profile</td>
</tr>
<tr>
<td>3</td>
<td>Second sealing layer beneath window sill</td>
</tr>
<tr>
<td>4</td>
<td>Joint insulation tape Illmod 15/5-10</td>
</tr>
<tr>
<td>5</td>
<td>Window sill end profile with slide bearing</td>
</tr>
<tr>
<td>6</td>
<td>Window sill</td>
</tr>
<tr>
<td>7</td>
<td>best wood corner bead with fiber mesh</td>
</tr>
<tr>
<td>8</td>
<td>best wood architrave bead with telescope function</td>
</tr>
<tr>
<td>9</td>
<td>Timber frame construction with best wood FLEX 50</td>
</tr>
<tr>
<td>10</td>
<td>Wood-based panel (e.g. OSB)</td>
</tr>
<tr>
<td>11</td>
<td>Vapor barrier/airtight sealing</td>
</tr>
<tr>
<td>12</td>
<td>Joint insulation tape Illmod 15/3-7</td>
</tr>
</tbody>
</table>

12/2014

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Window connection on window sill with second sealing layer

1. Vapor barrier/airtight sealing
2. Wood-based panel (e.g. OSB)
3. Timber frame construction with best wood FLEX 50
4. Best wood reveal board
5. Joint insulation tape Illmod 15/3-7
6. Window sill end profile with slide bearing
7. Window sill
8. Joint insulation tape Illmod 15/5-10
9. Second sealing layer beneath window sill
10. Best wood WALL 180
11. Best wood render system
Window connection on window sill with second sealing layer - 3D view

1. Timber frame construction with best wood FLEX 50
2. Best wood WALL 180
3. Second sealing layer beneath window sill
4. Best wood render system
5. Joint insulation tape under window sill, suspended on 10 mm
6. Window sill
7. Window sill end profile with slide bearing
8. Joint insulation tape Illmod 15/5-10
9. Joint insulation tape Illmod 15/3-7
10. Screw from stainless steel
11. Best wood reveal board
12. Best wood FDM adhesive sealant
Window connection - window lintel

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing
4. Best wood render system
5. Best wood WALL 180
6. Joint insulation tape Illmod 15/3-7
7. Best wood corner bead with fiber mesh
8. Best wood architrave bead with telescope function
9. Best wood reveal board

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Window connection to exposed projecting roller shutter housing - version 1

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing
4. Best wood render system
5. Best wood WALL 180
6. Joint insulation tape Illmod 15/3-7
7. Best wood architrave bead with telescope function
8. Best wood corner bead with fiber mesh
9. Joint insulation tape Illmod 20/10-18
10. Exposed projecting roller shutter housing
11. Joint insulation tape Illmod 15/3-7
12. Best wood reveal board

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Window connection to exposed projecting roller shutter housing - version 2

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing
4. Best wood render system
5. Best wood WALL 180
6. Joint insulation tape Illmod 15/3-7
7. Best wood architrave bead with telescope function
8. Best wood corner bead with fiber mesh
9. Joint insulation tape Illmod 20/10-18
10. Glued timber board
11. Diffusion-permeable membrane
12. Exposed projecting roller shutter housing
13. Joint insulation tape Illmod 15/3-7
14. Best wood reveal board
Window connection to projecting roller shutter housing for plastering over

1. Wood-based panel (e.g., OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing
4. Best wood render system
5. Best wood WALL 180
6. Best wood FDM adhesive sealant
7. Exposed projecting roller shutter housing with suitable render baseboard
8. Drip edge profile integrated in exposed projecting roller shutter housing
9. Joint insulation tape Illmod 15/3-7
10. Best wood reveal board

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Window connection to venetian blind facing

1. Wood-based panel (e.g., OSB)
2. Timber frame construction with best wood FLEX 50
3. Glued timber board
4. Vapor barrier/airtight sealing
5. Best wood render system
6. Best wood WALL 180
7. Wide-back staples
8. Bonding with best wood FDM adhesive sealant for joints
9. Wood-based panel, e.g., three-layer board with support on three sides
10. Best wood WALL 180 set in the base rail and also bonded on the facing sides to 6 and over the complete surface to 8 using best wood FDM adhesive sealant for joints
11. Metal base profile with clip-on render profile
12. Metal angle for reinforcement with spacing of ≤ 1.0 m
13. Venetian blind
14. Diffusion-permeable wall lining membrane, e.g., Solitex WA, bonded to the window frame

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Storey transitions for pre-fabricated components

1. Wood-based panel (e.g. OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing
4. System of timber binders and joists with OSB-panel
5. Edge planking
6. Edge insulation best wood FLEX 50
7. Upright timbers for protection against settling
8. Best wood render system
9. Best wood WALL 180
10. Fiber reinforcement mesh with min. 10 mm projection
11. On-site application of serrated mortar and embedding of fiber mesh elements
Roof connection

Eaves with adjustable hanger

1. Underlay bonded to on-roof insulation board
2. Best wood TOP 180 on-roof insulation
3. Rafter with FLEX 50
4. Vapor barrier/airtight sealing
5. Timber frame construction with best wood FLEX 50
6. Wood-based panel (e.g. OSB)
7. Insect screen
8. Drip plate
9. Visible planking
10. Joint insulation tape Illmod 15/3-7
11. Adjustable hanger slotted into grooves in the rafter
12. Joint insulation tape Illmod 15/5-10
13. Best wood WALL 180
14. Best wood render system

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Roof connections to eaves without adjustable hanger

1. Underlay bonded to on-roof insulation board
2. On-roof insulation best wood TOP 180
3. Rafter with best wood FLEX 50
4. Vapor barrier/airtight sealing
5. Timber frame construction with best wood FLEX 50
6. Wood-based panel (e.g. OSB)
7. Insect screen
8. Drip plate
9. Visible planking
10. Joint insulation tape Illmod 15/5-10
11. Best wood WALL 180
12. Best wood render system

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Roof connections to verges

1. Load-bearing batten
2. Counter-batten
3. Underlay bonded to on-roof insulation board
4. On-roof insulation best wood TOP 180
5. Joint insulation tape Illmod 15/5-10
6. Best wood render system
7. Best wood WALL 180
8. Rafter with best wood FLEX 50
9. Vapor barrier/airtight sealing
10. Wood-based panel (e.g. OSB)
11. Timber frame construction with best wood FLEX 50
Roof connections to dormer cheeks

1. Wood-based panel (e.g., OSB)
2. Timber frame construction with best wood FLEX 50
3. Vapor barrier/airtight sealing
4. Best wood render system
5. Best wood WALL 180
6. Best wood connection profile from sheet metal
7. Insulation board anchor (e.g., Fischer FID 50) and screw from stainless steel with suitable seal
8. Underlay bonded to on-roof insulation board
9. Sheet metal flashing
10. Load-bearing batten
11. Counter-batten
12. On-roof insulation best wood TOP 180
13. Rafter with best wood FLEX 50
Roof connection for a monopitch roof on an exterior wall

1 Wood-based panel (e.g. OSB)
2 Timber frame construction with best wood FLEX 50
3 best wood render system
4 best wood connection profile from sheet metal
5 Insulation board anchor (e.g. Fischer) and screw from stainless steel with suitable seal
6 best wood WALL 180
7 Underlay bonded to on-roof insulation board
8 Sheet metal flashing
9 Roof tile with ventilation tile
10 Load-bearing batten
11 Counter-batten
12 On-roof insulation best wood TOP 180
13 Rafter with best wood FLEX 50
14 Vapor barrier/airtight sealing

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
- **Structural expansion joints**

- **Corner joints on existing buildings**
Continuous joints on existing buildings

1. Existing building
2. Best wood expansion joint profile for continuous surfaces
3. Best wood render system
4. Best wood WALL 180
5. Timber frame construction with best wood FLEX 50
6. Vapor barrier/airtight sealing
7. Wood-based panel (e.g. OSB)

This detailed drawing is intended as a general design suggestion. The actual construction needs to be checked by the designer/person responsible with regard to structural and physical considerations for the specific building concerned and is the responsibility of that person. The installation guidelines and technical data sheets for best wood ETICS must be observed. This version of the detailed drawing replaces all previous versions.
Fast & flexible!

best wood SCHNEIDER is a family-run business with more than 350 employees. Our products convince since they are made from best, PEFC-certified wood. Timber from local spruce is directly processed at the production site of Eberhardzell in southern Germany. Leftover wood from our sawmill and the glulam production is either used in our biomass heating plant or the wood chips are furtherly processed in our production for wood fiber insulation. Therefore, best wood SCHNEIDER stands for ecological building materials and an energy-efficient production!
Headquarter Germany

best wood SCHNEIDER® GmbH
Kappel 28
88436 Eberhardzell

Phone  +49 (0)7355 9320-0
Fax    +49 (0)7355 9320-300
E-Mail info@schneider-holz.com

Subsidiary Switzerland

best wood SCHNEIDER® GmbH
Bucherstrasse 10
9556 Affeltrangen

Phone  +41 (0)71 918 79 79
Fax    +41 (0)71 918 79 78
E-Mail info@schneider-holz.com

www.schneider-holz.com